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ABSTRACT'

Simultaneous excitation of a turbulent mixing layer by two frequencies, a
fundamental and a subharmonic, was investigated experimentally. Plane perturbations
were introduced to the flow at its origin by a small oscillating flap. The results describe
two experiments that differ only in the amplitudes of the imposed perturbations and both
are compared to the data acquired while the mixing layer was forced at a single
frequency.

Conventional statistical quantities such as: mean velocity profiles, widths of the

flow, turbulent intensities, spectra, phase-locked velocity and vorticity fields, as well as

streak-lines were computed. The rate of spread of the flow under concomitant excitation
at the two frequencies was much greater than under a single frequency although it
remained dominated by two-dimensional eddies. The Reynolds stresses and turbulence
production are associated with the deformation and orientation of the large coherent
vortices. When the major axis of the coherent vortices starts leaning forward on the high
velocity side of the flow, the production of turbulent energy changes sign (i.e. becomes
negative) and it results in thinning the flow in the direction of streaming. It also indicates
that energy is extracted from the turbulence to the mean motion. Resonance phenomena
play an important role in the evolution of the flow. A vorticity budget showed that the
change in mean vorticity was mainly caused by the nonlinear interaction between
coherent vorticities. Nevertheless the locally dominant frequency scales the mean growth
rate, the inclination and distortion of the mean velocity profiles as well as the phase-
locked vorticity contours.

* Also the Faculty of Engineering, Tel Aviv University, Ramat-Aviv, 69978 Israel.

' The results presented are based on the data acquired at Tel Aviv University by L
Weisbrot in 1984. These results were never analyzed since the latter took a position in
industry before completing his thesis work.
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INTRODUCTION

The turbulent mixing layer serves as a prototypical free shear flow and it was
therefore most frequently investigated. At first, the research was limited to a statistical
description of the flow, but since 1970s, it focused on conditional statistics and on
coherent structures (Wygnanski & Fiedler 1970, Brown & Roshko 1974, Winant &
Browand 1974, Browand & Weidman 1976; Wygnanski et al. 1979; Hussain 1983 etc.).
When it was realized that the coherent structures play a central role in the evolution of
the mixing layer, artificial excitation was soon to follow (Oster et al. 1978; Oster &
Wygnanski 1982; Ho & Huang 1982; Gaster et al. 1985; Fiedler & Mensing 1985).
Fiedler et al. (1981), Oster et al (1982) and Monkewitz and Huerre (1982) used the
parallel, linear stability analysis to predict the most amplified frequencies and the
amplification rates of the large eddies in the externally excited turbulent mixing layer
while others used modeling and numerical simulation to obtain similar results (Patnaik et
al. 1976, Acton 1976; Ashurst 1979; Riley & Metcalfe 1980, Corcos & Sherman 1984,
Inoue & Leonard 1987; Inoue 1989). Gaster et al ( 1985) have demonstrated the
significance of the flow divergence on the evolution of the large coherent structures and
the ability of the stability approach to predict it in great detail. All of these articles
revealed that selective, periodic disturbances strongly influence the coherent structures in
the flow and its development in the direction of streaming. Weakly nonlinear analysis
(Kelly 1967, Monkewitz 1982) suggested that a mixing layer might be more sensitive to
an external excitation by two frequencies, a fundamental and its subharmonic, because
the amplification of the latter could be affected by the presence of the former.
Experiments (Zhang et al. 1984, Wygnanski and Petersen 1987) and numerical
simulations (Inoue 1989; 1992) revealed that a concomitant periodic forcing at these two
frequencies affected the evolution of coherent structures and increased the spreading rate
of the mean flow beyond the values attained by single frequency excitation.

The task of enhancing the entrainment ability of the mixing layer was reinforced
recently by the quest to delay flow separation through controlled periodic perturbations.
The ideas were first articulated by Katz et al. (1989) and by Neuburger et al. (1988) who
showed that detached flow forms a mixing layer that separates between a "dead-water"
region adjacent to the surface and a constant velocity stream further away from it. The mean
streamlines in the “free stream” above such a mixing layer are seldom curved and they do not
diverge in the direction of streaming. Consequently, one would like to generate a sufficient
pressure difference across this mixing layer that will force it to bend toward the surface. The
most obvious way to attain it is, by bringing the surface close enough to the mixing layer thus
reducing the size of the reservoir of fluid available for entrainment by the low velocity side of
the mixing layer. One may also achieve a similar result by enhancing the entrainment rate of
the mixing layer from the limited reservoir of fluid bound by it and by the solid surface. A
bubble whose existence is deduced from time-mean data in highly turbulent flow nearing
separation represents a delicate balance between the adverse force slowing down the flow




and promoting its separation and the force normal to the mean streamlines that keeps the
mixing layer attached. We are interested therefore in exploring the role of the twin frequency
excitation in the promotion of flow reattachment or the delay of its separation.

Since the mixing layer is perhaps, the simplest turbulent shear flow occurring in
nature, a better understanding of its features may improve our understanding of
turbulence in general. For example: What is the role of large coherent structures in the
production of turbulence, how does it relate to nonlinear wave interactions, how one
assesses the inter relation between coherent structures and typical random quantities. The
measurements carried out by Weisbrot provide some information to the above mentioned
problems. For example, the various Reynolds stresses (both coherent and incoherent)
have been carefully scrutinized in order to explain the dependence of the flow on
coherent structures and on the various possible interactions among those structures.

The experiments were carried out in a facility described by Oster and Wygnanski
(1982) and slightly modified by Weisbrot et al (1988). Three sets of data were acquired
with the first one being referred to as the “single frequency ” (SF) case. It represents a
mixing layer formed between two parallel streams of different velocities 10 & 6m/s
respectively. The flow was excited by a single “fundamental”, initially unstable
frequency of 44.5 Hz. Measurements were made across the flow starting at x=200mm
from the splitter plate and terminating at x=1720mms at streamwise intervals of 20mm.
The other two data sets were labeled as “two frequencies-strong” (TFS) and “two
frequencies-weak” (TFW) because of a difference in the relative amplitude of the
excitation. The velocity ratio between the two streams bounding the mixing layer,
R=(U,-Uy)/(U;+U,), remained identical for all three experiments. The TFS and the TFW
sets were forced at a fundamental frequency of 36Hz and its subharmonic of 18Hz
simultaneously. The displacement amplitude of the oscillating flap was 3.8mm for the
fundamental and 4mm for the subharmonic for the set labeled “two frequencies-strong™;
the respective amplitudes for the weak excitation were lmm and 0.46mm. Two
components of velocity were measured instantaneously at 7 transverse locations by using
a hot-wire rake containing 14 wires configured in 7 X-wire arrays. The rake was
traversed across the flow until the velocity gradients and the turbulent intensity became
vanishingly small. Two reference signals and all individual velocity components were
digitized and stored.

The instantaneous velocity was decomposed into a time mean quantity, a phase locked
fluctuation <u> and the random residue: u=U+<u>+u,. We are fully aware that the
coherent portion of the motion may be smeared-out by phase jitter and therefore poorly
represented by a phase locked and ensemble averaged quantity (Zhou et al. 1996).
However, the phase jitter of the dominant structures in the present flows, was quite small.
Thus the coherent energy and Reynolds stresses obtained from simple, phase-locked data
and from the more complex, temporal pattern matching (Zhou et al 1996), were not
materially different. Consequently only the conventional phase-locked and ensemble
averaged results are presented. Various aspects of the coherent motions, including phase-
locked turbulent energy and Reynolds stress, phase and amplitude distributions of the
individual components of the disturbances, coherent vorticity contours and coherent




streak lines were calculated from the data. Based on these results, the relation between
coherent motions and the growth of the layer was observed.

RESULTS AND DISCUSSION

1. The Mean Flow
Streamwise distributions of the momentum thickness>
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are shown in Fig.1.1 for the three different excitations considered. It can be seen that the
rate of spread of these flows differs from case to case and also from region to region in a
single case. When the mixing layer was excited by a single frequency (labeled SF) the
momentum thickness increased up to x=560mm from the trailing edge of the splitter
plate (region I in the parlance of Oster et al, 1982). It then ebbed and decreased with
increasing streamwise direction up to x=840mm (region 2). Thereafter it resumed its
growth but at a much smaller rate. The data set labeled “two frequencies-weak” (or
TFW) shows a similar trend, however, its growth rate in region 1 is slightly smaller than
for the “single frequency” set. Its rate of spread in region 3, however is almost identical
to that in region I and considerably larger than the corresponding region for the single
frequency excitation. Furthermore, the onset of region 2 starts further downstream in this
flow (x=950mm.), nevertheless the final width of the flow at x=1580mm was 25% larger
than the flow that was excited by a single frequency. The momentum thickness resulting
from stronger excitation (the “two frequency-strong” case that is also labeled as TFS)
increases monotonically in the direction of streaming, nevertheless the initial rate of
growth for x<500mm is much larger than the final one. The final rate of growth in this
case is almost the same as the final rate of growth in the TFW experiment. It is clear
that strong, concomitant excitation at two frequencies can double the final width of
the flow relative to the single frequency excitation.

The different rates of spread plotted in Figure 1.1 show the dependence of the mean
flow on the excitation levels at the respective frequencies. The spreading rate is tied, in
turn to the turbulence production and therefore the latter is also plotted in Figure 1.1 and
will be discussed later.

In order to pinpoint the regions most affected by the external excitation the borders
and the center of the mixing layer were arbitrarily defined by three numbers expressing
the location on the mean velocity profile:

" Yo, represents the y location where the local mean velocity (U-U,)/(U-U;)=0.1,
and represents the border of the mixing layer with the low-speed stream,
Y095 defines the y location at which (U-U,)/(U,-U;)=0.95 and thus represents the
border of the mixing layer with the high-speed stream,
Yo s describes the locus of points at which (U-U,)/(U,-U,;)=0.5 and it represents
the center of the flow.

? This is an integral length scale whose integrand vanishes at both integration limits.




The streamwise distributions of Yo 1, Yos and Yy s are shown in Fig.1.2. The lateral rate
of spread of Yo 95 was initially (for x<330mm) quite rapid for the single frequency (SF)
excitation and for the strongly excited flow at two frequencies (TFS) but it was almost
nil for the TFW excitation. For 330<x<550mm the lateral rate of spread of Yos
increased for the TFW excitation while it decreased for the other two cases. For
550<x<1340mm Y/ 45 stopped its lateral rate of spread in the TFW and SF excited flows
but it increased its rate of spread for the TFS flow. While Y, s was identical for the TFW
and SF excited flows through the entire range of streamwise distances considered, it was
displaced laterally toward the low-speed stream for the TFS excitation at x>550mm. The
lateral divergence between Y95 and Y 5 that occurred at x>550mm for the TFS test was
largely responsible for the final width of this flow at the end of the measurement domain.
In contrast, the SF excitation resulted in the convergence between Y,; and Y,s at
550<x<840mm that reduced the width of the flow in this range (labeled as region 2 in
Fig. 1.1). Y, maintained its lateral rate of spread for the TFW flow up to x=950mm and
was responsible for the increased width of the mixing layer relative to the SF excitation.
Yo resumed its lateral growth for this case only beyond x>1400mms, while in the
interim (between 950 <x< 1400mm) it remained constant or even decreased slightly (Fig.
1.2). Consequently, while for TFW and SF excitation most of the spreading rate (and
presumably mixing) occurs on the low velocity side of the flow, it switches sides in the
TFS case. This observation deserves special attention as it may lead to improved mixing
through the use of active flow control. One may also note that Y, ; undulates for the TFS
case up to X~600mm beyond which it spreads laterally in a linear fashion as it does in an
unexcited mixing layer.

Normalized mean velocity profiles, (U-U,)/(U,-Uy;), corresponding to the three types
of excitation are shown in Figs.1.3a-c. The ordinate in these figures is (Y-Y(5)/0 and it is
consistent with the definition of the center of the mixing layer. The velocity profiles in
each region are self-similar but the similarity does not always hold throughout the
domain of measurement (i.e. between regions). For SF forcing the slope of the velocity
profile, dU/dY on the low-speed side of region 1 (dashed line)is larger than in region 3
(see symbols in Fig. 1.3a) while the opposite effect is seen on the high speed side. For
TFW forcing there is almost a perfect self-similarity between regions I and 3 (Fig. 1.3b).
In the case of TFS forcing at X>1000mm region (it is impossible to discuss this flow in
terms of distinct three regions), there is a strong kink in the mean velocity profile that on
the high-speed side and moves toward the center with increasing x (Fig. 1.3c). This
deformation is closely related to the type of coherent motion dominating the flow (e.g.
the frequency) in a given region, as it will be discussed later.

2. . Reynolds stress and turbulent intensities.

The lateral distributions of Reynolds stress and two components of the turbulent
intensity are shown in Fig.2.1-2.3 for the three flows considered. The first and last
streamwise locations chosen correspond to regions I & 3 while the intermediate
locations represent data taken in region 2 and its boundaries (i.e. transition regions
between 1-2 and 2-3).




The Reynolds stresses are positive in regions I and 3 for SF and TFW (Fig. 2.1a & b)

where the momentum thickness also increases (see Fig. 1.1). However, the sign of the .

Reynolds stress changes in region 2 and it is associated with a decrease of the momentum
thickness in the direction of streaming. Typically, close to the end of region 1 of the SF
case (i.e. for X=540mm in Fig. 2.1a), the shear stress on the high-speed side of the
mixing layer becomes gradually negative. At X=560mm, d6/dX=0 and the integral of the
shear stress across the layer vanishes as well. Around X=800mm the Reynolds stress
tends to become positive again and with it d8/dX>0. This location marks the transition to
region 3 in Figure 1.1. One may observe that the maximum negative value of u’v’ occurs
in the center of the mixing layer in the SF case (Fig. 2.1a).

The results for the TFW excitation are similar to the SF flow, in particular the
correlation between the integral of the Reynolds stress across the flow and the location

. corresponding to d6/dX=0. In region 2 (e.g. at X=1080mm), the shear stresses are

negative across the layer. At X>1120mm, transition from region 2 to 3 occurs and the
Reynolds stress becomes positive again (Fig. 2.1b). There are, however, interesting
differences between the TFW and the SF cases during the transition from region 1 to 2.
In the TFW flow, the negative shear stress appears first on the low speed side and
remains there throughout region 2 and the transition region between 2 and 3. For the SF
flow the negative shear stress appears first in the center, above (on the high speed side)
the region of positive Reynolds stress. The transition from region 2 to 3 is associated with
the generation of a new zone of positive Reynolds stress on the high velocity side of the
flow. This region diffuses toward the low-speed side of the mixing layer with increasing
X. Thus, whenever the Reynolds stress distribution has an “S” shape in the TFW case,
the zone of positive stress is always on the high speed side (see the lateral stress
distributions at X=1040 & 1120mm in Fig. 2.1b) while it switches from side to side in
the SF experiment. In the TFS experiment d8/dX>0 everywhere and thus the integral of
the shear stress never changes its sign. Out of the five locations plotted in Fig. 2.1c the
first two are in a region of locally decaying Reynolds stress while the last three in a
region of local amplification. It will be seen later that the abrupt increase in Reynolds
stress for the last three locations is related to a corresponding change in the form of the
coherent structures.

The corresponding distributions of the u’ and v’ are plotted in Figs.2.2 and 2.3. For the
SF excitation the distribution of the u’ at a given X contains two maxima separated by a
saddle point in the center (see Fig. 2.2a at X=540 & X>800mm) while the v’ distribution
contains a single maximum at the center of the flow (Fig. 2.3a). Such intensity
distributions are indicative of a single row of traveling vortices. A similar observation
can be made for the TFW excitation around X~980mm. On the other hand, for the TFW
flow at X>1400 and for the TFS flow at X~660 the v’ distribution becomes extremely
peaky while the v’ distribution becomes broad and eventually develops two maxima with

a saddle point in between. Further downstream the u’ distribution develops three maxima. .

while the v’ distributions get two (Figures 2.2¢c & 2.3c). These distributions suggest that a
vortex pairing takes place in which some of the vortices that were originally in line got
displaced laterally. When the initial displacement is comparable to a typical radius of a




vortex the u’ component gets a strong peak in the center but as the displacement
increases this peak may split into three (Fig. 2.2¢ X=1060mm).

The integrated values of u’%, v’*> and u’v’ across the layer are shown in fig.2.4. Most
interesting is the correlation between the sign of the integrated Reynolds stress and d6/dX
(Fig. 1.1). Whenever fu’v’dY<O0 so is d6/dX. The local maxima and minima of 6 match
the zero crossings of fu’v’dY perfectly for the SF and TFW experiments. In a mixing
layer, O represents an integral length scale whose integrand vanishes on both sides of the
flow, thus the relationship between u’v’ and 6 differs from the relationship we are
accustomed to in a boundary layer. However, since dU/dY in mixing layer is always
positive, the sign of shear stress determines the sign of the turbulence production. For this
reason, the integrated turbulence production term fu’v’(dU/dY)dY is plotted in fig.1.1.

The integral value of [(u’)* dY is hardly amplified for the SF excitation before starting
to decay slowly with increasing X. In the TFW case, the value of J(u’)’dY increased by a
50%, reached a plateau and then increased again when f(u’v’)dY>0. The value of
J(v’)’dY in this case, attained an amplification of 440% just prior to the location at which
[(wv’)dY became negative at X=950. In the TFS case the amplitude of f(v’)’dY
increased in a stepwise manner, first by a factor of 2, then to 3 before resuming
continuous growth and attaining a factor of 5.5 at the end of the measurement domain.

There is an exchange of energy between the two components of turbulence intensity
that is most obvious for the SF excitation. For example: a saddle point in the j(u’)? dY
occurring at X=550mm, corresponds to a maximum in the J(v’)> dY. The relationship
between the two fluctuating components in the TFW and TFS experiments is more
subtle but it exists non the less. These relationships imply that significant energy is
contained in large two dimensional eddies as already observed by Gaster, Kit and
Wygnanski (1985). These relationships will be better understood when the phase-locked
and ensemble-averaged data of a given scale will be processed

3. Mean Momentum Balance.

In order to check the two-dimensionality of the flow and to some extent the reliability
of the measurements, the Reynolds stress distributions were calculated from the two
dimensional momentum equation:
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The integration was initiated on the high-speed side from a Y location corresponding
to a vanishing velocity gradient. The normal mean velocity component V, used in the
momentum balance was not measured but rather calculated from the continuity equation
because measurements of V with hot wires are notoriously inaccurate in turbulent shear
flows. The values of V at infinity were determined by iterative procedure requiring that
the Reynolds stress on the opposite side of integration domain will vanish. This criterion
was independent of the side at which the integration was initiated. The entrainment field
results in a pressure gradient that is neglected by the boundary layer approximation.
Dropping the pressure gradient at the integration boundaries resulted in an error that was
most apparent at the boundaries. Thus a free stream pressure gradient was imposed at the
boundaries of the integration. Since the streamwise velocity gradients on the high-speed
boundary of the flow are not the same as on the low speed side, the local pressure
gradient was calculated from linearly interpolated values across the layer.

The results of these calculations are marked by solid curves in fig.2.1. There is good
agreement between calculations and measurements for the TFW and TFS cases
throughout the measurement domain and in region I of the SF experiment where the
calculated positive Reynolds stress matches the measured data very well. In the transition
regions marking the boundaries between I and 2 or 2 and 3 of SF, the calculated shear
stresses match all the important features of the experiment, including the appearance of
the negative shear stress starting on the high-speed side of the flow. At x=560mm, where
d6/dX=0, the integral of the calculated shear stress across the layer also vanished. In
region 3 however, there is a considerable discrepancy between the calculated Reynolds
stress and the data measured for the SF experiment. This raises some questions about the
two-dimensionality of the flow near the end of the measurement domain where the
coherent eddies become weak.

4.Spectra.

The existence of coherent structures in turbulent flows can be detected through spectral
analysis. Even in the absence of external excitation, a spectral peak appearing in the low
frequency range can often be identified with a wavy disturbance that had undergone the
largest possible amplification. These predominant frequencies may vary somewhat across
the flow because of its divergence in the direction of streaming (Crighton & Gaster
1976). Spectral analysis can provide extensive information about energy transfers that
take place in externally excited flows.

The power spectra of the v’ fluctuations and the cross spectra of u’v’ measured at
various x locations close to center line of the layer are shown in Fig. 4.1 and 4.2. The
power spectra of the u’ fluctuations are not shown for the sake of brevity because, for a
two-dimensional perturbation, the two distributions (u” & Vv’) are related through
continuity and are usually delayed in phase. Furthermore, the preferred locations to track




the v’ fluctuations are at the edges of the shear layer and not its center (consider an array

of co-rotating eddies located on a centerline of the mixing layer such as were observed by
Oster et al 1978).

For the SF excitation the fundamental frequency dominates the entire flow (Fig. 4.1a)
with a weak harmonic being present at the end of region I due to the relatively large
amplitude of the fundamental. No subharmonic frequency was observed suggesting that
“vortex pairing” is inhibited by the single frequency harmonic excitation. The cross-
spectrum is also dominated by the excitation frequency even though it is an order of
magnitude weaker than the power spectrum (Fig. 4.2a). The streamwise location at which
the cross spectrum becomes negative (indicating the possible existence of a negative
Reynolds stress) corresponds to the location at which v’ attained its maximum amplitude.
Consequently this is the location at which the mean flow became neutrally stable relative
to the imposed disturbance.

Similar observation can be made for the TFW case, except that the peak in the power
spectrum at the fundamental frequency is much higher and it occurs at a larger
streamwise location (Fig 4.1b, see also Fig. 1.1b). Two additional observations can be
made:

(1) The streamwise amplification of the subharmonic disturbance might not have
attained its maximum at the end of the measurement domain because it was not
initially amplified. It is interesting to note that the subharmonic excitation is
hardly distinguishable from the background over 60% of the measurement
domain (Fig.4.1b,4.2b). One may correlate this with the low amplification rate of
the integrated intensity [v’2dy (Fig.2.4) observed at small distances for the TFW
case.

(i)  On the other hand there is an early appearance of a wavy disturbance generated
by the interaction of the two excited modes (i.e. 3/2 of the fundamental
frequency). This suggests a transfer of energy from the imposed excitation to the
interaction mode. Once again the location of the peak in the power spectrum
corresponds to the onset of a negative cross-spectrum at f and 3/2f.

In the TFS case there is an early dominance of the 3/2f perturbation that overshadows
the fundamental in spite of the fact that the latter frequency was externally forced upon
the flow (Fig. 4.1c). The disturbance at the fundamental frequency, f, attained its first
maximum level around X=340mm while the peak at the interaction frequency occurred
soon thereafter (X=400mm) to be followed by the subharmonic disturbance (around
X=600mm). The locations of these peaks in the spectrum correspond also to the locations
at which undulations in fv’2dy occur. A second peak in the fundamental disturbance
occurs further downstream (around X=650mm) where the cross spectrum at that
particular frequency is negative. This suggests a strongly non-linear interaction among
these three modes. The negative cross spectrum at the fundamental frequency
corresponds to a local plateau in fu’v’dy shown in Fig2.4. The dominance of the
subarmonic (f/2) and the interaction (3/2f) modes in the power and cross spectra for the
TFS excitation is another indication that a nonlinear mechanism is responsible for the
energy exchanges that take place in this flow. In particular, downstream of the peak in




the 3/2 power spectrum, there is no corresponding negative cross-spectrum region. It
implies that the decay of the 3/72 frequency is not due to the negative production or direct
energy transfer back to the mean, but rather, due to transfer to other components through
nonlinear interactions.

5. Phase-locked and Ensemble Averaged data.

One may assume that the coherent structures are represented by the phase locked and
ensemble averaged velocity fluctuations. One may further decompose these coherent
fluctuations in Fourier space to obtain the amplitudes of the leading spectral components
in the flow. They correspond of course, to the two forcing frequencies and their sum,
since these were also the leading spectral components observed in Fig. 4.1.

The spatial distribution of the prevailing disturbances (i.e. the fundamental, fo, the
subharmonic, fo/2, and the leading interaction, 3fo/2) are shown in Figs. 5.1 to 5.3 at
some selected streamwise locations. The data corresponding to the SF excitation for
200<X<560mm like the amplitude distribution of <u>g, is well known (Gaster et al.
1985 and Weisbrot & Wygnanski 1988) because it represents a linearly amplifying mode.
Around X~550mm this mode ends its amplification cycle and starts to decay. The
amplitude and phase distributions therefore, represent a typical array of eddies that span
the entire width of the flow.

The initial evolution (for X<700mm) of the fundamental frequency in the TFW
experiment is similar to SF forcing. However, toward the end of the measurement
domain (i.e. for X> 1300mm.) the amplitude distributions of <u>g, and <v>, indicate that
the array of decaying vortices is being displaced laterally in an orderly staggered fashion.
This is coupled with a typical, distribution of <u>g, that is being amplified at
X>1040mm. The distributions of fo and fo/2 amplitudes for the TFS excitation are
similar to TFW except that they occur much closer to the origin of the flow. The stagger
of the decaying vortices associated with the fundamental frequency occurs around
X=400mm and it evolves into two separate rows of vortices toward the end of the
measurement domain (see the <v>;, distribution in Fig. 5.3b at X=1340mm). The
amplitude distributions of <u>¢,; or <v>¢,, measured at X>1000mm in the TFS case are
not familiar from linear stability analysis. It is interesting to note that a very small
amplitude of <v>¢,; in the TFW case generates a substantial amplitude of the nonlinear
interaction mode <v>3q,. This is particularly visible in the initial region (X<500mm in
Fig.5.2b) where the fundamental frequency is being linearly amplified by extracting
energy from the mean motion. At larger distances most of the energy is being absorbed
by the subharmonic <v>g,,. In the TFS case, where he initial amplitude of <v>g is
equal to <v>g, the interaction mode <v>3¢,, is of comparable amplitude (see Fig. 5.3 for
X<500mm). The relative intensity of the interaction mode, <v>3q,, in both flows
decreased after the subharmonic became the dominant mode ( see Figs. 5.2 & 5.3 for
X>1300mm).

The various phase-locked quantities were integrated across the layer to obtain the
streamwise variations of the coherent energy contained in the individual modes. The
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results for J<u’>dy, J<v’>dy, [<uv>dy and their leading coherent quantities are shown in
Fig.5.4a-c respectively. The corresponding total turbulent intensities discussed previously
are re-plotted here for comparison. The initial value of f<u>>dy for the SF excitation is
approximately 70% of fu’dy but it diminishes slowly to 25% at the end of the
measurement domain. For the TFW case the initial level was only 55% yet it increased to
75% at large X, while for the TFS excitation this ratio remained at approximately
constant level of 85% (see Fig. 5.4a). The ratio between I<v2>dy and .f(v’)"dy is usually
larger than for the streamwise component of velocity and it exceeds 90% for the TFS
excitation. The amplification ratios of the <v> component at the fundamental frequency
are much larger than the amplification of the <u>¢ component. For SF case, for example,
f<u*>dy increased over its initial value by a mere 25% in region 1, it increased by 70% in
region 1 of the TFW excitation but did not increase at all for TFS (Fig. 5.4a). The
integrated normal component, f<v?*>dy, increased by 5 fold for SF, by 20 fold for TFW
and only by a factor of 4 for TFS. The disparity in the amplification between the
streamwise and normal components made the total, integrated turbulent energy behave
like f<v*>dy thus the sum of the two components is not presented here. This is also the
case for the subharmonic <v>g, which becomes dominant at the end of the measuring
domain for the TFW excitation and dominates the flow beyond X>600mm for the TFS
case.

Most of the coherent energy for the SF excitation is contained in the fundamental
frequency with the subharmonic being insignificant everywhere (fig. 5.4). For the TFS
excitation the initial forcing levels at fo & at fo/2 were comparable, however while the
fundamental hardly amplified the subharmonic soared. It is worth mentioning that the
interactive mode, 3fo/2, may play an important role in both TFW and TFS experiments.
Its integrated energy attained the same level as the fundamental around X=350mm in the
TFS case while exceeding the energy content of the subharmonic around X=500mm (fig.
5.4b) in the TFW experiment. In both TFW and TFS cases the subharmonic frequency
got rapidly amplified after the fundamental started to decay suggesting possible energy
exchange between fundamental and the subharmonic.

The contribution of the individual components to the Reynolds stress is shown in figure
5.4c. At small values of X, most of the coherent Reynolds stress is contained in the
fundamental excitation frequency for the SF and the TFW flows but not in the TFS case
that contains coherent stresses at fo, fo/2 and many higher harmonics. These are
associated with the high forcing amplitudes. Wherever f<uv>dy becomes negative during
the SF experiment so does the integrated Reynolds stress fu’v’dy. The latter changes sign
(to become positive again) around X=840mm due to the contribution of random motion
(Fig. 5.8c). In the TFW excitation the negative J<uv>dy is offset by the positive
[<uv>g,dy making the overall Reynolds stress still negative but over a very short region.
The positive contribution of the subharmonic f<uv>g,dy in the TFS case overwhelms the
negative Reynolds stress associated with the fundamental frequency thus retaining a
positive stress throughout the flow. In fact, the slope of f<uv>g,dy with X increased
tremendously at the very same location at which f<uv>dy became negative (ie. at
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X=350mm), At this very location the overall turbulence production for the TFS flow had:
its minimum (Fig. 1.1). This suggests that the coherent motion associated with the
fundamental frequency transfers energy to the subhamonic and it may do so due to a
resonance. The contribution of the 3fo/2 frequency to the Reynolds stress is negligible for
all three types of excitation used, although its energy content is significant, particularly in

the TFS case. This leads one to believe that the 3fo/2 mode does not interact with the

mean motion but rather with the two forced waves.

6. Vorticity balance.

Before discussing further the role of the coherent structures in this flow and their
effects on the vorticity distribution, one should verify that the phase locked and ensemble
averaged vorticity field derived from the measured velocity field is indeed correct. Thus,
the vorticity balance was tested. Reynolds decomposition of the equations of motion into
steady and random components renders the turbulent energy budget that expresses the
interaction between the mean motion and the turbulence through production term. Triple
decomposition into mean, coherent and random motion (Hussain 1983), yields a coherent
energy equation that explains the interaction between the coherent and the mean energy
through production term; it also provides for the interaction between the coherent and the
random components of energy through the inter-modal production term. However, this
equation does not provide information about the interactions that occur among the
coherent motions themselves, this can be provided by the vorticity equation. Thus, a
vorticity balance will enable us. to explore the nonlinear wave interactions.

According to Hussain (1983), the rate of change of the mean vorticity is given by:
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Where the first term on the right side of the equation represents the stretching and
twisting of the mean vorticity by the mean velocity gradients. The second term represents
the viscous diffusion to the mean vorticity. The third term represents the time averaged
interaction (i.e. stretching and convection) between the coherent vorticity and the
coherent velocity fluctuations, while the fourth term does the same for the random
motion.

Similarly, the substantial derivative of the coherent vorticity:

1?2



Dwa=w é’U,.+
Dt 77 Ox,

- g ( - )= (U, )+ (< > )
5xj a)Ci qu a)Cl qu ﬁxj uQ &xj u,-, (07 u,-,- C(),,-
174

e, O 0, O (Ue D~ Ui D)
"Ox,  Ox.Ox, Ox, ©¢ "o

Q

- (<0),,vu->"a),,-u‘)
ox, i i

is balanced by the sum of the eight terms on the right side of the equation. Now however,
the first term on the right side represents the stretching of the coherent vorticity by the
mean velocity gradients while the second term represents the stretching of the mean
vorticity by the coherent velocity gradients. The third term yields the viscous diffusion of
the coherent vorticity. The fourth and fifth terms represent the residual coherent (after
subtracting the mean) interaction between the coherent vorticity and the coherent
velocity fluctuations. They again represent the stretching and convection of the coherent
vorticity that is analogous to the third term in the mean vorticity equation. The sixth
represents the convection of mean vorticity by the coherent eddies, while the seventh and
eight terms the residual coherent (after subtracting the mean) interaction between the
random vorticity and random velocity fluctuations

By assuming that the coherent motion is principally two-dimensional (2D) the
streamwise component of the coherent vortices may be neglected. One may also assume
that the influence of the random motion is secondary and negligible and therefore terms
1, 4 and the first portion of term 3 can be dropped from the mean vorticity equation. For
the same reason, the terms 1, 2, 4, 7 and 8 on the right side of the coherent vorticity
equation can also be neglected.

The rate of change of mean vorticity (left hand side of the mean vorticity equation)
- was calculated directly from the measured mean velocites for typical x locations and
plotted using discrete symbols in Fig.6.1. The lines represent the same quantity that was
calculated from the right side of the equation and required phase -locked and ensemble
averaged input. The good agreement between the two sets of data indicates that the
measurements and the assumption of two-dimensionality of the coherent structures are
valid. The calculations suggested that the viscous diffusion term can also be neglected
thus, the rate of change of the mean vorticity is only caused by the time-averaged
convection of the coherent vorticity by the coherent velocity. In other words, the
- changing distribution of the mean vorticity across the flow and consequently the
spreading rate of the entire mean velocity field is caused by the non-linear interaction
between coherent motions.

The calculations based on the coherent vorticity equation were not as satisfactory,
particularly near the borders of the mixing layer with the respective uniform streams and
near the center of the mixing layer. Thus, the results plotted in Fig. 6.2 are for two
selected Y locations on each side of the mixing layer only; they contain however, all




three data sets: SF, TFW, TFS. The agreement between the calculations and the
measurements (i.e. representing both sides of the coherent vorticity equation) is
qualitatively reasonable. The discrepancies attributed to lack of two-dimensionality and
to the terms representing the random motion (terms 7 and 8) that probably should not
have been neglected. Since the viscous diffusion term was again negligible, the rate of -
change of the coherent vorticity is balanced by terms 5 and 6 in the equation (i.e. the
convection of coherent and mean vorticity by the coherent eddies).

7. Coherent vorticity.

The isodynes (vorticity contours) plotted in Fig. 7.1 were calculated from the two-
dimensional, phase locked and simply, ensemble-averaged data. They show the
interactions between adjacent, coherent vortices and they provide a visual basis for
comparing the three experiments, SF, TFW, TFS. The time-averaged results of these
interactions are rooted in the vorticity balance described above. Only the most relevant
isodynes are shown in Fig. 7.1 because some of this data was published elsewhere
together with the associated streak lines (Wygnanski & Weisbrot 1988). An attempt was
made to sharpen those images by using the temporal pattern recognition technique (Zhou
et al, 1995) but the improvement in the results did not warrant the added complexity.

The coherent structures in the SF case (for X>500mm, corresponding to the location
where the linear amplification of the disturbances at the fundamental frequency ceases)
are well represented by a single row of vortices, whose strength diminishes with
increasing X. These vortices are equally spaced in the direction of streaming and are
aligned with the mean center of the flow (i.e. Yo s). For the TFW case, adjacent vortices
are staggered slightly around the mean center line due to the imposed subharmonic
perturbation. This leads to a mutual induction that results in a decrease of the stream
wise distance between them as they proceed downstream (compare Fig.7.1b numbers 4 &
5), leading to possible pairing beyond the measurement domain. The lateral displacement
of adjacent pair of vortices in the TFS case is much larger, even at small values of X, and
that enables their amalgamation within the measurement domain (Fig. 7.1c numbers 5 &
6). The large, lateral displacement of these eddies causes the observed distortions in the
mean velocity (Fig. 1.3), and results in the peculiar distribution of amplitudes of the
leading frequencies contained in these coherent structures (see Fig. 5.3). Since the levels
contained in the coherent parts of the motion dominate the flow they may even be
observed in the turbulent intensity distribution shown in Fig. 2.2¢.

The vortices displaced toward the high velocity side (upward in Fig 7.1) in the TFW
case retain their strength much further downstream than the vortices displaced downward
(i.e. toward the low velocity side). However, the relative strength of adjacent vortices in
the TFS case oscillates with increasing streamwise distance. This suggests that there is a
periodic exchange of vorticity and presumably energy between such pair of vortices
during their amalgamation process. Initially, the strength of the vortex that is displaced
upward increases with X while the vorticity contained in the one displaced downward
(toward the lower velocity side in Fig. 7.1c) is quickly depleted (compare numbers 2, 3 &
4 in Fig. 7.1c). The process is reversed for X>1200mm (see numbers 5 & 6 in Fig. 7.1c).
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The Reynolds stress distribution is also closely related to the shape and inclination of
the isodynes as was suggested by Browand & Ho (1983) and by Hussain (1983). When an
eddy represented by a closed vorticity contour is tilted backward (i.e. it is advanced more
on the low velocity side than on the high velocity side), the Reynolds stress that it
generates is positive. When it is tilted forward, its contribution to the Reynolds stress is
negative. Amplified, wavy perturbations are associated with vortices that are tilted
backward while decaying ones are always tilted in the forward direction (Michalke 1964,
Wygnanski & Weisbrot 1988). One may also filter the phase locked and ensemble-
averaged Signals and determine the frequency that dominates the isodynes and whether
that mode decays or amplifies. For example: eddy number 1 in the SF case (Fig. 7.1a) is
amplified while 2 starts to decay and the decay rate of 3 is even larger. In the TFW flow
eddy number 1 is amplified, 2 is almost neutral while the fundamental modes 3 & 4
(shown as single vorticity concentrations in Fig. 7.1b) that are further downstream, decay.
The combination of the two vortices (Fig. 7.1b number 5) indicates amplification at the
subharmonic frequency since the line connecting the two centers is tilted backward. A
similar observation can also be made for the TFS experiment where the rate of
amplification of the subharmonic mode increases up to the maximum at vortex pair 5
(angle of inclination approximately 45 degrees) and then decreases at large X (4,5 & 6 in
Fig. 7.1¢c).

The relation between the inclination of a coherent vortex to the flow direction
(marked by the angle ¢ in Fig. 7.1b & 7.2b) and the coherent Reynolds stress that it
generates may be quantified by assuming that such an eddy conserves its angular
momentum. Consequently: (u'*+v'?)r = C, where u’ and v’ are the coherent velocity
components and r is the distance of the typical point on the control surface from the
center of the vortex (Fig.7.2b). C is a constant defining the intensity of the circulation in
the vortex.

Assuming that only the orientation of the vortex varies during its movement downstream,
the coherent velocity induced by such a vortex will not change for an observer moving
with the vortex. Thus, the relation between the u’v’ and the vortex orientation can be
found by considering any point that is fixed on the vortex. For simplicity, a point located
at the end of the minor axis (see point A marked on Fig. 7.2b) is chosen for this purpose.

Thus:u'= \/Esinqﬂ;— V'= ‘/Ecos;t; and —u'v'= £sin(2¢)
r r 2r

Consequentl, f]"(-u'v')dxdy=%sm(2¢)°f T%dxdy &)

For a particular vortex, the maximum or minimum integral of the coherent Reynolds
stress should occur wherever sin(2¢)=%1 or the inclination of the vortex is: ¢=+45°.
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The calculated inclination angles of the fundamental coherent vortices based on the
Reynolds stress (Fig.5.4c) are shown in Fig.7.2c and are compared to the vorticity
contours in Fig.7.2a. For the SF case, the fundamental component of the Reynolds stress
1s maximum at X=300mm while vanishing at X=550mm before attaining a minimum
negative stress at X=700mm. The corresponding calculated inclination angles of the
isodynes (Fig. 7.2¢) corroborate these findings ¢=+45° at X=300mm, ¢=0° at X=550mm
and ¢=-45° at X=700mm. One may also compare the calculated values with isodynes
(considering the fundamental only) in the TFW and TFS cases. The good agreement
between the two very different sets of measurements, suggest that the correlation
between them is high.

If, however, one concerned with the coherent Reynolds stress of the subhamonic one
may consider adjacent pairs of vortices as shown in Fig. 7.1b & ¢ (numbers 4 & 5) or
filter the coherent vorticity so it includes the subharmonic only. In the TFS case the
maximum coherent Reynolds stress at the subharmonic frequency occurred at
X=1100mm and it corresponds to ¢, = +45° (see Fig.7.1c number 5).

8. The conditions for resonance and the definition of a dominant mode.

The oscillatory interchange of the intensity of circulation between adjacent pairs of
vortices or between the two vortices within a pair in the TFS flow ( Fig. 7.1¢) suggest
that a resonant interaction might have taken place between the fundamental and the
subharmonic. Furthermore, in many instances (for the SF excitation in particular), the
energy contained within the coherent structures increases or decreases depending on the
sign of coherent Reynolds stress (fig. 5.4c). It implies that the coherent eddies exchange
energy with the mean motion, mostly extracting energy from it, via the production term
<uv>dU/dY. This however, is not always so as was observed for the TFS excitation (Fig
5.4b & c). Here, the energy contained in the fundamental mode increases in the direction
of streaming (for X>380mm) despite the fact that the shear stress associated with this
mode is negative between X=380mm and 1060mm. On the other hand, the energy
contained in the fundamental mode follows the positive production term and increases
beyond X=1060mm. The mismatch between the increase in the energy contained by a
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specific mode and the production term for this mode implies that the energy comes from
sources other than the mean motion and this again suggests a resonance.
The standard conditions for triad resonance in parallel shear flow that is

concomitantly excited by two wavy disturbances, fo and fo/2 are:

Olres = Ay T Olgor2

Brcs = Bfo * Bfo/Z
where B is the frequency and o is the wave number. Whenever the instabilities are
evolving in space o is complex (x = o, + io;) while B is real and determined by the
excitation frequency. In the present experiment ., might be associated with the
subharmonic, fo/2 (that is also the difference between the imposed frequencies), or with
their sum 3/0/2. In order that the two primary waves will exchange energy between them,
they have to travel together i.e. their phase velocity, c,, = B/a, has to be identical over
some region. In parallel flows, excited at constant frequencies, this may be a frequent
occurrence because a is constant across the flow [i.e. a = a(x) only], but in a divergent
mean flow of the kind considered presently, the regions of possible interaction are more
limited since a.= a(x,y). Another complicating factor is the fact that energy can be
exchanged between the coherent eddies and the mean flow that in turn responds by
changing its rate of divergence in the direction of streaming and/or by getting distorted.

The phase velocities of the dominant disturbances were calculated for the entire flow
field and for the three experiments considered. A sample of those Coh Tepresenting the
variation of the <v> component with x are plotted in Fig. 8.1 for three locations across
the flow: on the high velocity side (Y~100mm), in the center (Y~0) and on the low
velocity side (Y~-110mm). The <v> component was selected because it is the. most
amplified component of the flow, its amplitude is large in the central region of the
mixing layer and it does not reverse its phase in the center. The phase velocity of the
fundamental mode that is the only frequency of significance in the SF experiment, is
approximately constant everywhere and roughly equal to: U=0.5(U;+U,). The phase
velocity of the fundamental mode in the TFW case is also constant throughout the flow
but the other two modes oscillate around it. These oscillations diminish with x in the
central region of the flow (i.e. atY=-5Smm) and they are hardly significant beyond
x>1000mm (see Fig. 8.1b). On the high speed side of the flow all three modes travel
together up to x=1200mm whereupon the 3f0/2 mode undergoes a rapid acceleration (Fig.
8.1a). On the low velocity side of the flow the three waves locked in phase at x>800mm.
For 800<x<1200 there is a reasonable lock-in among all three waves across the entire
width of the flow. In this region however, the mean flow is slightly contracting (Fig. 1.1)
due to the negative production associated with the decaying fundamental mode (Figs.
5.4c¢).

The ordinate in fig. 8.2 represents the rate of amplification of a given mode defined by
ddxflog[f<v> +<u>®)dY)/ [fi<v>* +<u>*)dY], ). When a single wave develops in a
linear manner due to the instability of the mean motion this quantity is analogous to -
;@R The fundamental mode amplifies and decays in a manner consistent with a linear
model. During its decay (for x>850mm) it probably transfers some energy to the mean
motion because the production term of the fundamental is negative and the mean flow
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responded by reversing its lateral rate of spread (fig. 1.1). A reduction in the energy
thickness (that behaves like ) indicates a gain in the mean energy.

In TFW, the energy contained in the subharmonic mode keeps increasing (ﬁg 5.4)
and its rate of increase does not diminish between 800 and 1200mm from the origin (fig.
8.2). A linear model would have predicted a reduction in that rate which would
presumably be parallel to the reduction in the fundamental, £, The 3f,’2 component lost
energy in this x interval (fig. 5.4), as it also appears in figure 8.2.Thus, in this range of
stream-wise locations the amplification of £, and fj2 is enabled by a transport of energy
from the mean flow (through the production of the fundamental) and by the decay the
3fy2 mode. The incoherent motion also decreases in intensity in this region (i.e. for
800<x<1200mm) eliminating the possibility of energy transfer to the random, smaller
scale eddies. Thus the dominant mode, over most of the measurement domain (for
x<1300mm, see fig. 5.4b), is the fundamental mode that behaves in a manner reminiscent
of the linear development.

Under ideal (linear) development, the subharmonic mode should have attained its largest
rate of amplification where the fundamental becomes neutrally stable (i.e. around x =
850mm; Fig. 8.2a) It could have then amplified further (Kelly 1967) if it were to receive
energy from the fundamental. This is probably not the case in this flow, since the rate of
amplification of the subharmonic remained constant in this region (i.e. for 850<x<1300)
and the total mean energy did not change as well (the rate of spread of the mixing layer
stopped). The resonance proposed by Kelly might have occurred at larger distance (i.e. at
x>1300mm) where the rate of decay of the fundamental and the rate of amplification of
the subharmonic have both increased. The two modes traveled together (Fig. 8.1 a-c) and
during this interval the amplitude of the subharmonic increased tremendously (Fig. 5.4).
The most plausible explanation to this exchange of energy is resonance.

In contrast to the TFW experiment the phase velocity of subharmonic in the TFS case
keeps almost constant throughout the entire measurement domain. The phase velocities
of £, and 3f,’2 are almost identical to the subharmonic on both sides of the flow, but
differ from it in the central region for x>850mm (fig. 8.1e). Around this streamwise
location, the decay rates of both of these modes attained their maximum. The
fundamental mode starts to amplify for x>1000mm, at this x its phase velocity is
sufficiently different from the subharmonic’s and it can no longer transfer energy to it.
The 3f,/2 mode follows suit around x=1200mm and resumes its amplification while the
amplification rate of the subharmonic decreases in this region (fig. 8.2b). Consequently
the subharmonic appears to be the dominant wave in the TFS experiment.

Yao (1998) suggested that the mean flow is involved in the resonance and it could be
considered as a wave of zero frequency and an infinite wave length. It contributes to the
energy transfer between the fundamental and the subharmonic and sometimes has a role
of a catalyst in the process. Therefore, the production term of an individual mode (e.g.
<uv>,dU/dy) does not conflict with the concept of resonance. Consequently the
integrated production rates of £, and of 3/,/2 across the flow are plotted on figure 8.2. The
spectra presented in fig. 4.1 indicate that f, is the dominant mode in the TFW
experiment. This dominance is shared among all three major waves (f,/2, ., & 3f,/2) near
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the origin of the TFS experiment but it ends with the dominance of £,/2 in the last 50% of
the measurement domain.

9. CONCLUDING REMARKS

The turbulent mixing layer is very sensitive to external, two-dimensional excitation
because the momentum transport across it is mostly coherent. In some instances more
than 90% of the ensuing Reynolds stress is even contained within the excitation
frequency. Furthermore by exciting the flow at two frequencies, a fundamental and a
subharmonic, the resulting Reynolds stresses remain large and coherent throughout the
test section. This is not the case when the flow is excited at a single frequency.
Calculations based on the two-dimensional mean momentum and vorticity equations
suggest that the mean flow and the large coherent eddies are predominantly two-
dimensional. Reasonable mean and coherent vorticity balances were attained by
assuming both components to be two-dimensional and totally neglecting the influence of
random motion. This opened the possibility of correlating the coherent Reynolds stresses
to the deformation and orientation of the spanwise coherent vortices.

The dramatic increase in Reynolds stress resulting from simultaneous excitation at the
fundamental and subharmonic frequencies is associated with a resonance phenomenon
that extracts energy from the mean motion or from the fundamental excitation frequency
depending to a large extent on the level of the excitation. When the level of the
subharmonic frequency is high it quickly dominates the flow and the measure of this
dominance may be assessed by the linear-like behavior of this mode. This might be tested
by its relation to the rate of spread of the mean flow. For a mean velocity profile that can
be approximated by a hyperbolic tangent {i.e. U=1/2[1+tanh(y)]}, a linear perturbation
attains its maximum amplitude ( i.e. becomes neutrally stable) where f@U,=0.08. This
number was reached at x=850mm for the TFW case where the dominant frequency
considered in the above equation was fo. The same number was attained near the end of
the measurement domain (around x=1350mm) for the TFS case but the dominant
frequency considered in this case was fo/2. Therefore the quantity f@'U,=0.08 may serve
as a criterion for the determination of the dominant mode in a flow excited by a
multitude of periodic perturbations. All the results collapse approximately onto a single
curve (Fig. 9.1b) when the measured f@'U, is scaled with RffX-Xo)/Uc where f is the
dominant frequency, Uc is the measured phase velocity at the dominant frequency and
R=(U;-U)/(U+U)). ’

The practical advantage of exciting the flow at two frequencies simultaneously
becomes self evident when one assumes that the dimensionless saturation thickness,
based on the predominant frequency, remains unchanged. The excitation at the
fundamental frequency is advantageous at small X because the mean flow amplifies this
frequency more rapidly than its subharmonic and it responds by spreading faster
(Fig.9.1a). However, if the subharmonic has a substantial amplitude at the saturation
location of the fundamental, it may extract energy from it through resonance and thus
dominate the rate of spread of the mixing layer as long as it did not reach its new
dimensioless saturation value (Fig. 9.1b). This technique enables the mixing layer to
become twice as wide at a prescribed distance from its origin. Since the large coherent
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eddies control the scalar transport and the rate of chemical reaction (Roberts, 1985)the
concomitant excitation of the flow at both frequencies has its payoffs. It also should have
an impact on the effectiveness of the control of separation by periodic excitation because
it depends on the rate of entrainment of ambient fluid by the mixing layer near a solid
surface.
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Fig.6.2 Coherent vorticity balance




X(m)=0.12

— fundamental subharmonic

Fig.7.1 Vorticity contours of the forced mixing layer
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